
MATHEMATICAL MODELING OF COMPLEX HEAT TRANSFER 

IN SLIT CHANNEL 

S. P. Detkov and O. A. Khalevlch UDC 5 3 6 . 3  

A system of energy-transfer equations in layers of water vapor and a gray medium 
is given and numerically solved, taking account of radiation turbulent and 
molecular heat conduction. 

i. The conditions of the problem are as follows. In a plane layer with surface temper- 
atures T, > Ta and reflection coefficients R, and Ra, there moves a medium selectively absorb- 
ing, radiating, and scattering energy. All the physical characteristics, including the albe- 
do and the specific power of the chemical reactions, vary over the depth. Following the ex- 
ample of [i], the temperature field is regarded as one-dimenslonal. The problem is steady- 
state. The temperature field and energy fluxes in the medium are determlned. 

2. The energy balance of a volume element is written in dimensionless form 

0 ( N e - - ~ - - )  = ( l - - ~ ) ( 0 4 - - O ~ - - g , )  ( 1 )  
Or 

w i t h  t h e  b o u n d a r y  c o n d i t i o n s  0 = Ot when  T = 0 a n d  0 = 02 when  T = To,  w h e r e  

Y 

0 * i  i 

04 = llII4nZ&~ 04. = 'Vlab /4n~~ ~I = 4~176 

N e = N (1 + Pr  %Iv), N = k~/4n2oT~, o~ = [~lk, 

g ,  = g/4n2~aT~, 8 = T /T  o. 

3. The method of solution adopted is organically related to the form of Eq. (i) and is 
being tested for the first time in the formulated problem. It involves quasilinearlzatlon 
of Eq. (i) : 

o ' -  = (o - o , )  + o j  ( 2 )  

The value of 0 is substituted into the square brackets in the zero approximation, and is 
found in the round brackets by solving Eq. (i) using the standard scheme of the finlte-dlf- 
ference method. The value of 8, is found from the equation 

40~nZoY~ = = qab = ~ I  - -  divqr" ( 3 )  

This constitutes the first step in the successive approximation of the temperature field. 
Usually the function 8(T) converges after 8-12 steps. 

The first feature of the method of solution, as is evident, is that the dimensionless 
4 is isolated. This allows the calculation of the ra- density of the absorbed radiant flux 8, 

diant heat transfer to be separated from the calculation of the turbulent and molecular heat 
conduction and facilitates the direct solution of Eq. (i). Any method may be used to calcu- 
late 84. it does not depend on Eq. (I) Another important feature of the method is that the 
dimensionless optical depths are determined on the basis of the mean Planck absorption coef- 
ficient a and the scattering coefficients, which depend on the spectra of the bodies. 
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4. The spectra of the bodies are taken into account in the calculations of the attenu- 
4 

ation coefficient and the volume density of the absorbed flux 8,, The general, more correct 
method is used to calculate the spectral quantities qab' which are then s,m,,ed over the spec- 

trum. Equation (3) is not affected by this, and is used to monitor the final results. 

In the present work, another method is used to calculate 8:, on the basis of the inte- 
gral (over the spectrum) absorptive capacity of the medium for an incident flux with a black 
spectrum. From the value of a, the density of the hemispherical fluxes is found, and then 

div qr ~ [(q+ -- q_)k -- (q+ -- q_)Lt]/AY �9 

Finally, na b is determined from Eq. (3). 

5. Consider the calculation of the fluxes ~ and q_ in a selective medium without scat- 

tering in a channel with gray walls. The wall radiation is assumed to be isotropic, and 
the reflection specular. 
tions are shown in Fig. i. 

Five "forward" fluxes from different sources and initial dlrec- 
In the channel they are reflected and, at a depth of Zk, summed: 

q+, = (1 -- Rt) oT~ ~ (RiR~)I [1 - a (~k q-  2/%)], 
i=0 

q+~. = (1 -- R2) RtaT~ ~ (RtRz) I [1 - -  a (xh + < 2] + 1 > x0)], 
/--0 

i=, I=o 

q+6 = ~ RiRzoT~ (RIR,)! [a (~k -- ~t_i + 2 < i + J > %) 
l--I  /=.0 

- a ('~,, - -  'q + 2 < j + 1 > xo)],  

where i -- 1 and i are the boundaries of region i along the x axis. The fluxes q-t are cal- 

culated from analogous formulas. The partial fluxes are s,-,med: 

5 5 

q+h = Z q§ q_h = ~ q_t �9 
t = l  t = l  

Usually, the reflection coefficients are small and it is sufficient to take account of 
the first 4-6 terms of the series. Where this is not the case, the use of the following ap- 
proximate formula, obtained on the basis of [2], is recom,~nded 

Z R,R~_ a ('~ + 2%) , 
(R,R~)i a (~ + 2i~;o) = I - -  R , R  --a(x q- 6%) - - a ( x  q- 4x0) 

i = l  - 1 -- RIR2 V a (x + 2%) 

where T takes values from zero to 2T. for the different fluxes. T h e  error of the approxima- 
tion for the calculated fluxes is usually considerably less than 1%. It is zero for a gray 
medium and isotropic reflection with T = 0 and any value of To. 

6. Consider the tra-qition to the limit of the formula in Sec. 5 for a gray medium. In 
this way, incidentally, isotropic scattering of the medium is taken into account, On the ba- 
sis of the typical equation (isotropic reflection) 

= w a n d  q = q / n 2 g T ~ ,  t h e  f o l l o w i n g  e x p r e s s i o n s  a r e  o b t a i n e d :  with the notation 2E n n 

# . ,  = ( f  - -  R , )  O~w3 (T)/z, #+,. = R,  ( l  - R 9  8~w3 ('0 ws Oro)/Z, 
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Fig. I. Five component "forward" fluxes q+t (at 

a depth of T k) from different primary sources and 
directions. 

q+a= ~ B( ' r ' )wz ( I r - - r ' ! )  dr', 
0 

'1[ o 

q§ = R,w~ (r) j" B (r) w,. (r) dr~z, 
0 

To 

0 

q~- -  

b,=(, RO0~+R,j'Bw,.(~)ar, b~ (I R@o' ' - -  = - -  2 ~-"  ] ~ 2  

0 

where z = 1 -- R, R2W~(To). Here and below, isotropic scattering in the medium is taken into 
account with B = (i -~)e 4 + toO, and not B = e 4 in the formula of Sec. 5. 

Summing the fluxes gives 
Tk 

(q+)h "-~ q .  (xk) = qelWa Ork) + .[ B (r) wz (xk - -  x) d'r, 
0 

(q_h E q_ (~) = qe~3 (~o - xh) + ~ B (~) wz ( x - -  ~h) &, 
�9 c k 

bi + b2dt b2 + btd~. 
, qe~ - -  , d t = R i w s  ('to), d,~ = R 2 w  s ('to), 

1 - -  did z 1 - -  did z 
1[i 1~o 

j'Bw,(r - ~)d~. 

4 is well known [3]: The equation for 8, 

T$ 

40.  ~ = ~lw, (T) - q~w2 (~o -- ~) + j B (~') wi (J ~ - ~'1) d~'. 
0 

The three integral equations written for qe*, qe 2, and O~, and also Eq. (i), are solved si- 
multaneously at each step of the iteration for the temperature field in the medium. The re- 
sults of solution are given in Sec. 9. 

The equations of this section are easily transformed for a spectral interval, by averag- 
ing the absorption and scattering coefficients in it. The sum of the solutions of the equa- 
tions over the whole spectral interval lead to the value of 8~ required for the solution of 
Eq. (i). In this case, the spectra of all the bodies are taken into account. A method of 
taking into account the scattering anlsotropy is described in Sec. i0. 

7. In the case of a medium including only one absorbing gas component, it is expedient 
to use, in parallel with the T axis, the axis of the depth x, m.atm, in terms of the partial 
pressure p: 

Yo 

x_- Xo-- I pd .. 
�9 0 
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In the present work, numerical calculations are carried out for water vapor, using a 
new formula for the absorptive capacity with respect to an incident flux with a blackbody 
spectrum, published in [4]. In the given problem, the primary sources=of flux are not only 
surfaces but also regions, the elementary layers of the medium. The absorptive capacity of 
the gas for the flux emitted by the i-th region is described on the basis of reciprocal rela- 
tions using the same formula with a general notation for the temperature of the region (the 
flux source) T i regardless of the form of the region. 

The directed absorptive capacity is integrated approximately over the solid angle. For 
a plane layer, according to [5], the following relation holds 

a (x)= (7"/T,)" e,'[T,, x~/Tl)"l, 

where 

e. = 0.0628 e (8.8 x') q- 0.4444 8 (2x') q- 0.4928 e (l. 125 x'), 

E is the directed emissivity for thicknesses x' = x(~/T~) u, multiplied by 8.8, 2, and 1.125. 
The formula for s and the power-law indices m and u are-given in [4]. The quantity T is the 
temperature of the absorbing medium averaged according to the simplest formula 

= __I / T(xi) dxi, 
X , 

0 

where T is the local temperature at a depth 0 ~ x, ~. x. The value of x is composite if mul- 
tiple reflection of the flux occurs. The basis for this formula is given in [6] and else- 
where. 

The new formula for the absorptive capacity, in contrast to the well-known Hottel formu- 
la, gives a physically acceptable value of a(x) for any argument x. This is important be- 
cause the series in Sec. 5 include a with unbounded growth of the optical thickness. 

8. The heat-transfer coefficients are taken on the assumption of completely developed 
turbulent flow along the channel walls. According to a three-layer scheme 

O < y+ < 5, eTIv = O, 5 < y+ ~ 30, % i v = 0 . 2 y  + - 1 ,  

30 < y +  ~< y~o/2, eT/v = O.ly § (1.82 --  2y+/yo). 

The third formula for the flow core is written on the basis of continuity of the f~ctions 
u(y), CT/V = f(y), and therefore differs from the formula published in [7]. This is insig- 

nificant. What is much more important is the value of r in the boundary layer, where the 

pulsations of the medium are damped. A check of the version with a single formula for s 
given in [i] showed that the heat fluxes obtained for all the transfer mechanisms are too 
high by -3%. The difference is explained almost exclusively in that according to the single 
formula ~T/9 > 0 in the boundary layer. 

9. Numerical results for a system of gray bodies are given in Tables 1 and 2 and Fig. 
2 for y+ = 400, V + = 19.76, Re = 3953, Pr = i. The well-known data given in [3] and else- 
where are nothing like as complete as t~ose of the present calculations. They were repro- 
duced in the present program as a control, and the discrepancy did not exceed a few units in 
the fourth significant figure. 

For water vapor mixed with nitrogen, the algorithm has as yet been checked only for the 
particular results published in the literature. In Fig. 3, the temperature field with the 
left-hand side of Eq. (i) set equal to zero is shown, taking account only of the radiation 
mechanism. Comparison with the curves of [8] reveals slight discrepancies. The present re- 
sults are more accurate, since the radiation of the gas is determined from its absorptive 
capacity, the temperature field is taken into account for the absorption path, more accurate 
formulas are used for the absorptive capacity and emissivity of the gas and the integral over 
the solid angle, and the broadening of the spectral lines is taken into account, 

In the case of cold walls and a given linear temperature field, the very particular 
problem first solved by Kavaderov is obtained. The solutions of this problem are reviewed 
in [9]. A s,,~-ry of some of the data is given in Table 3; for comparison, data obtained 
on a simpler basis in [i0] are also given. 

182 



TABLE i. Dimensionless Density (q  = q / n 2 o T o  4) of H~,~spheri- 
cal Fluxes (convective, radiant, total, and effective at the 
layer boundaries 1 and 2)* 

N 

' ~ = 0  

o 
0,001 --0,1271 [-- l ,  7806 - -  1,9077 I I ,4452 
0,01 -.0,5889 i--l  ,0024~ - - I  ,5913 ]I ,2506 
0,1 0,4465 0,4412~ 0,887610,8897 

I 24,2589 0,61311 24,8720 I0,8467 

T ~ T  0 

qc2 qrt 

0,0000 1,2719 
0,2173]1,1365 
0,905910,7668 
3,9508[0 , 2018 
27,996810 , 1416 

qt q ~  

1,2719] 1,2720 
1,35381 1,1366 
1,67231 0,7666 
4,1526 0,2019 
28,1384 0,1417 

Accurate. dtvexgenee of fluxes qz 
ana ql 

No. of 
q t - - q ,  i tera-  

t ions 

3,2628 23 
3,2615 24 
3,26371 21 
3,2619 10 
3,2664 6 

3,2620 

+ 
*The ratio E/9 is calculated by a three-layer scheme with Yo = 
400, Re = 3953, Pr = I, and n = I. 

TABLE 2. Dimensionless Thermal-Flux Densities at the Layer 
Boundaries* 

x = 0 ~=To N o . o f  
N I .,--r i t e t a -  

qcl [ q r I qt qel q82 rio ns 

0 
0,001 
O,Ol 
0,1 

1 

0 
--0,0437 
--0,0070 

2,3305 
26,3020 

0,0435 i 
o,1228[ 
0,3488[ 
0,4138 
0,4029 

0,0435 0,9891 
0,0791 0,9693 
0,3418 0,9128 
2,7443 0,8965 

26,7048 I0,8993 

Accurate divergence of fluxes qt 
and q2 

�9 qC2 q [ 2  q2 

0 3 ,4437  0,4437 
0,0730 3,4065 i 0,4794 
0,4402 3,3023 0,7425 
2,8775 0,2721 3,1496 

26,8667 9,2797 27,1463 

9,4437 0,400~ 
9,4066 0.400~ 
0,3024 0.400! 
0,2722 0,405~ 
0,2798 0,441~ 

0,399fi 

15 
18 
18 
12 
7 

*The conditions of Table i are retained, except that the albe- 
do is assumed to be constant: to = 0.9. The temperature field 
is shown in Fig. 2b. 

TABLE 3. Hemispherical Fluxes Emitted by a Water-Vapor Layer 
with Cold Black Surfaces* 

q+. kW/m 2 q_, kW/m ~ 
xo,  

m-arm 

0,001 
0,01 
0,05 
0,1 
0,5 
1 
10 

0,458 
4,10 

14,6 
23,2 
51,4 

0,446 
4,21 

16,75 
26,4 
47,8 

0,447 
4,24 

17,20 
27,5 
50,7 
57,3 
75,3 

0,824 
6,84 

21,61 
30,8 
52,9 
62,4 
87,2 

0,460 
4,23 

16,40 
27,4 
80,0 

0,446 
4 ,23  

17,66 
30,2 
82,5 

0,447 
4,26 

18,00 
31,0 
85,6 

119,5 
254,9 

0,865 
7,79 

29,65 
48, I 

!14,7 
150,9 
281,2 

*The temperature field in the layer is linear: T = 1000(2 --x/ 
Xo), P = 1 arm, p = 0.1 arm; R, = R2 = 8, = 82 = ,,~ = 0. The 
column numbers correspond to the following conditions; I) cal- 
culation according to [10] (the approximation m = u = 0, P, = 
1 atm); 2) present calculation with the assumptions of [i0] ; 3) 
present calculation with m = u = 0, P, = P + 5p 27~7~; 4) pres- 
ent calculation with the values of m and u given in the text and 
effective pressure P, = P + 5p 2/~-3/T. 

i0. Taking account of scattering anlsotropy in a plane layer is technically complex, 
but does not involve any fundamental difficulties. The scattering index must be written as 
a series in Legendre polynomials. The integral equation for e~ is complicated and, in addl- 
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Flg. 2. 
ditions = 

f 
l 

i 

f _. .......... 

Temperature field in a gray medium (u) under the con- 
B, - 1; 0# = 0.i; To " 1; RI = 0.2; R= - 0,5; Pr - 1; 

= 0.1 + 0.6 (~/To)[1 --(T/To)] (U); g, = 100(T/TO)exp(--10 T/ 
To). The curves are n,-,Hered in order of increasing N~ 0, 
0.001, 0.01, 0.i, i. The flux den-ltles at the layer boundaries 
are glven in Table 1. The coefficients CT/U are taken from+a 
three-layer scheme wlth separation of the boundary layer; Yo = 
400; Re = 3953; v + - 19.76; b) the temperature fleld in the case 
of constant albedo: w = 0.9; all other condltlons are the same, 

?(x, x0) / 

0 
l " 7 13 n 

Fig. 3. Temperature field in an 
adiabatic layer of water vapor 
with Tz = 2000~ ~ = 1000~ 
g, =~ = N e = 0; P = i ate" p = 
0.i arm; P, = P + 5pJ273/T. The 
numbering of the curves corres- 
ponds to the thickness x, m. atm: 
0.01, 0.i, i, i0, i00; n is the 
number of the region for uniform 
division of the segment Xo, m-atm. 
The ordinate is given in the tradi- 
tional form( p = (T ~ -- T~)/(T~ -- 
T~). 

tion, there appear new integral equations in accordance wlth the n-mber of terms of the ser- 
ies. All the integral equatlons~ including those for qe~ and qe#, must be solved simultan- 
eously at each step of the iterative approximation of the temperature field. Equation (i) 
and the method of its solution remain unchanged. 

NOTATION 

U, dimensionless absorptive capacity of the medium for a flux wlth a blackbody spec- 
trum; Cp, specific heat, J/kg-~ g, specific power of chemical reactions, W/m s ; k = a+ B, 
attenuation coefficient, m-L; n, refractive index; q, density of hemispherical flux, W/m = 
or dimensionless q+k' q-k' "forward" and "back" fluxes at depth Tk; qc' qr' density of con- 

vective and radiant heat fluxes; u, local velocity of medium along the surface, m/sec; u,, 
dynamic velocity, m/sec; v +, velocity averaged over the channel cross section, dimensionless; 
y, coordinate from surface 1 along the normal Into the depth of the medium, m; Pr, Prandtl 
number; Re, Reynolds number; R, surface-reflection coefficient; N, conductlve-radlatlonal 
parameter, dimensionless; Ne, its effective value, taking Into account heat conduction and 
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turbulization of the medium; T, T,, T2, To, temperature of the medium, surface temperatures, 
standard temperature (To = 1000~ e*i' ~i, mean Planck absorption coefficients of the sus- 
pended-phase and gas components; B, scattering coefficient averaged over the spectrum, m-*; 
eT, turbulent-heat-transfer coefficient, m2/sec; e, e,, directed emissivity and emissivity 
integrated over the solid angle for the layer; ~, thermal conductivity, W/m.~ 9, kinematic 
viscosity, m2/sec; T, optical depth in terms of the attenuation coefficient, dimensionless; 
x, optical depth in terms of the partial pressure of the gas component, m. atm; To, Xo, optical 
thickness; p, P, P,, partial, total, and effective pressure, arm; HI, ~ab' volume density of 
the intrinsic and absorbed fluxes, W/m ~. Indices: i, 2, channel surfaces at T =0, To; e, 
effective value; i, region number; j, reflection number. The dimensionless quantities are 
defined as follows 

0 = T / T  o, Ot = T , /To ,  O, = T2 /T  o, x o = k y  o, 

to = fi/k,  y+ = y u , / v ,  u + = u / u , ,  P r  = cppv/~ . ,  

0 4 = nab / (4n~or~) ,  N =/~/(4n=or3o), 
s 

I 

: V e = N ( I  + P r e T / v ) ,  w n ( x )  - ~ 2 E  n (T)  = 2  exp  - -  ix n - ~ d l x ,  

0 

q c ( T )  - n qo~T4o = - -  4 N e  O0 
aT  ' 

qr ('r) - n ' o T g  

r Tw 

0 
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